Blog Comments Classification using Tree Structured Conditional Random Fields
نویسنده
چکیده
The Internet provides a variety of ways for people to easily share, socialize, and interact with each other. One of the most popular platforms is the online blog. This causes a vast amount of new text data in the form of blog comments and opinions about news, events and products being generated everyday. However, not all comments have equal quality. Informative or high quality comments have greater impact on the readers opinions about the original post content, such as the benefits of the product discussed in the post, or the interpretation of a political event. Therefore, developing an efficient and effective mechanism to detect the most informative comments is highly desirable. For this purpose, sites like Slashdot, where users volunteer to rate comments based on their informativeness, can be a great resource to build such automated system using supervised machine learning techniques. Our research concerns building an automatic comment classification system leveraging these freely available valuable resources. Specifically, we discuss how comments in blogs can be detected using Conditional Random Fields (CRFs). Blog conversations typically have a tree-like structure in which an initial post is followed by comments, and each comment can be followed by other comments. In this work, we present our approach usingTree-structured Conditional Random Fields (TCRFs) to capture the dependencies in a treelike conversational structure. This is in contrast with previous work [5] in which results produced by linear-chain CRF models had to be aggregated heuristically. As an additional contribution, we present a new blog corpus consisting of conversations of different genres from 6 different blog websites. We use this corpus to train and test our classifiers based on TCRFs
منابع مشابه
Detecting Informative Blog Comments using Tree Structured Conditional Random Fields
The Internet provides a variety of ways for people to easily share, socialize, and interact with each other. One of the most popular platforms is the online blog. This causes a vast amount of new text data in the form of blog comments and opinions about news, events and products being generated everyday. However, not all comments are informative. Informative or high quality comments have great ...
متن کاملExploiting Conversational Features to Detect High-Quality Blog Comments
In this work, we present a method for classifying the quality of blog comments using Linear-Chain Conditional Random Fields (CRFs). This approach is found to yield high accuracy on binary classification of high-quality comments, with conversational features contributing strongly to the accuracy. We also present a new corpus of blog data in conversational form, complete with user-generated quali...
متن کاملWord Sense Disambiguation for All Words using Tree-Structured Conditional Random Fields
We propose a supervised word sense disambiguation (WSD) method using tree-structured conditional random fields (TCRFs). By applying TCRFs to a sentence described as a dependency tree structure, we conduct WSD as a labeling problem on tree structures. To incorporate dependencies between word senses, we introduce a set of features on tree edges, in combination with coarse-grained tagsets, and sho...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملCharacterizing Online Discussion Using Coarse Discourse Sequences
In this work, we present a novel method for classifying comments in online discussions into a set of coarse discourse acts towards the goal of better understanding discussions at scale. To facilitate this study, we devise a categorization of coarse discourse acts designed to encompass general online discussion and allow for easy annotation by crowd workers. We collect and release a corpus of ov...
متن کامل